

HCC – new frontiers in treatment

Eduard Jonas

Surgical Gastroenterology / Hepatopancreatobiliary Unit University of Cape Town and Groote Schuur Hospital Cape Town

2 February 2018

eduard.jonas@uct.ac.za

Overview

- Epidemiology
- Etiology
- Clinical presentation
- Diagnosis
- Treatment
- Prognosis

Overview

- Epidemiology
- Etiology
- Clinical presentation
- Diagnosis
- Treatment
- Prognosis

Introduction

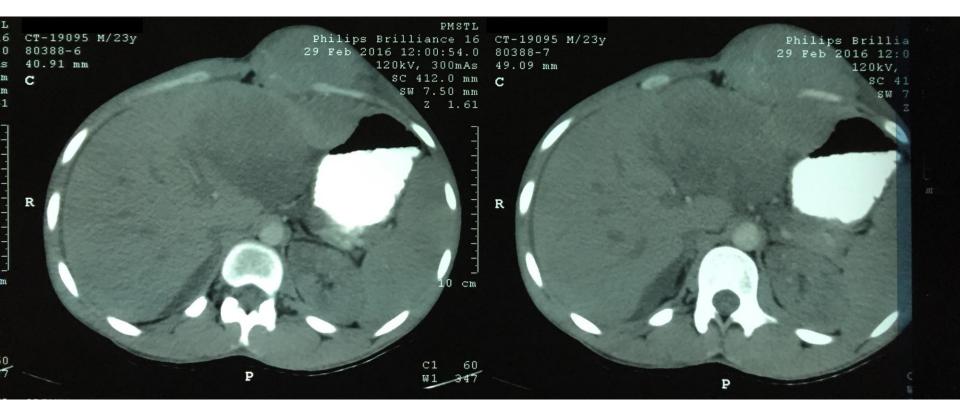
- Most common primary hepatic malignancy
- Annual incidence is 782000 people annually*
- Globally accounts for 9.2% of all new cancer cases
- 5th most common cancer in males and 8th in females
- Around 84% occur in less developed regions
- Annual mortality is 746000*
- Worldwide it is the second leading cause of cancerrelated death

*IARC. *Liver Cancer: Estimated Incidence, Mortality, Prevalence Worldwide in* 2012. http://globocaniarcfr/Pages/fact_sheets_canceraspx. 2012. Accessed December 12, 2013.

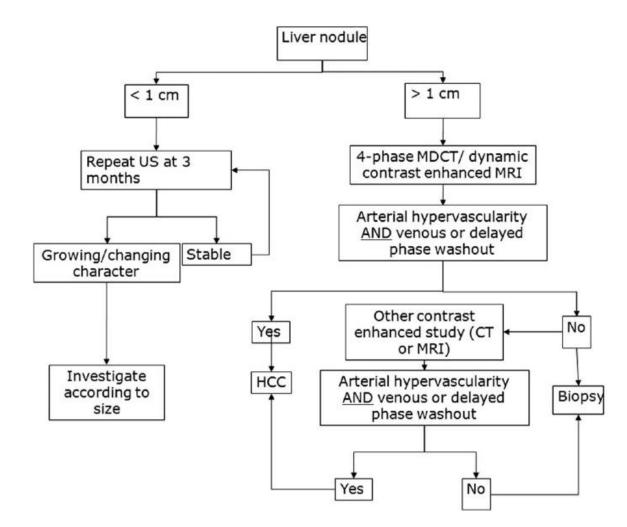
HCC in Africa

- High prevalence in all Sub-Saharan African countries
- Most common cause of cancer-related death in men and the 3rd most common in women
- Annual fatality ratio is 0.96
- Occurs at a younger age
- A large percentage present in non-cirrhotic livers
- Present with larger tumours
- Present more often metastatic disease

Etiology

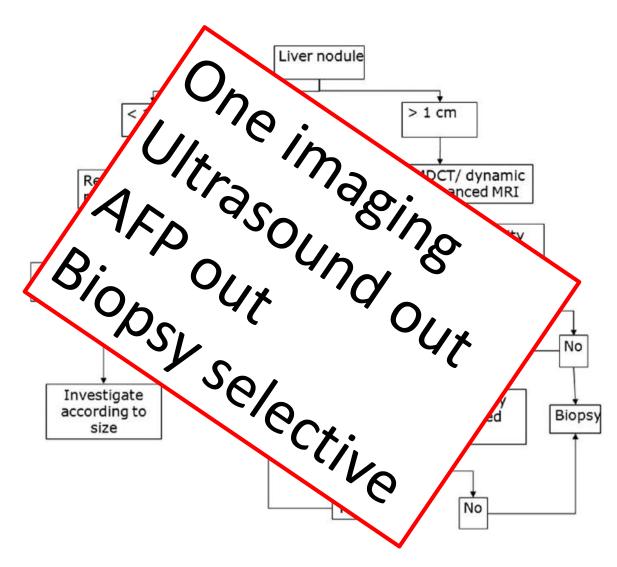

- Chronic hepatitis B infection
- Chronic hepatitis C infection
- Dietary aflatoxin B₁ exposure
- Metabolic syndrome (NAFLD/NASH)
- Alcohol abuse
- Iron-overload (inherited and acquired)
- Cirrhosis of any cause
- Smoking
- Tyrosinosis
- α₁ antitrypsin deficiency
- etc.

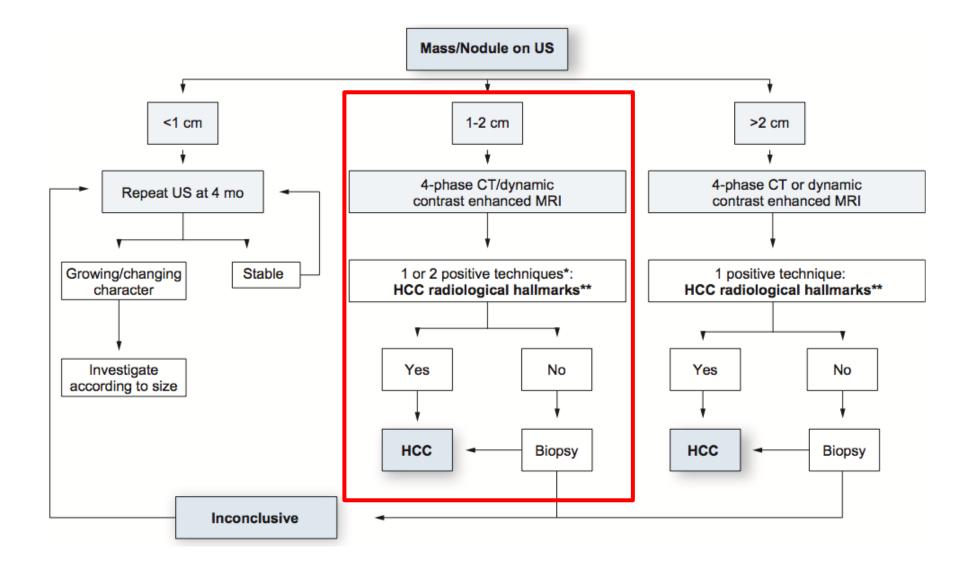
Etiology in Africa

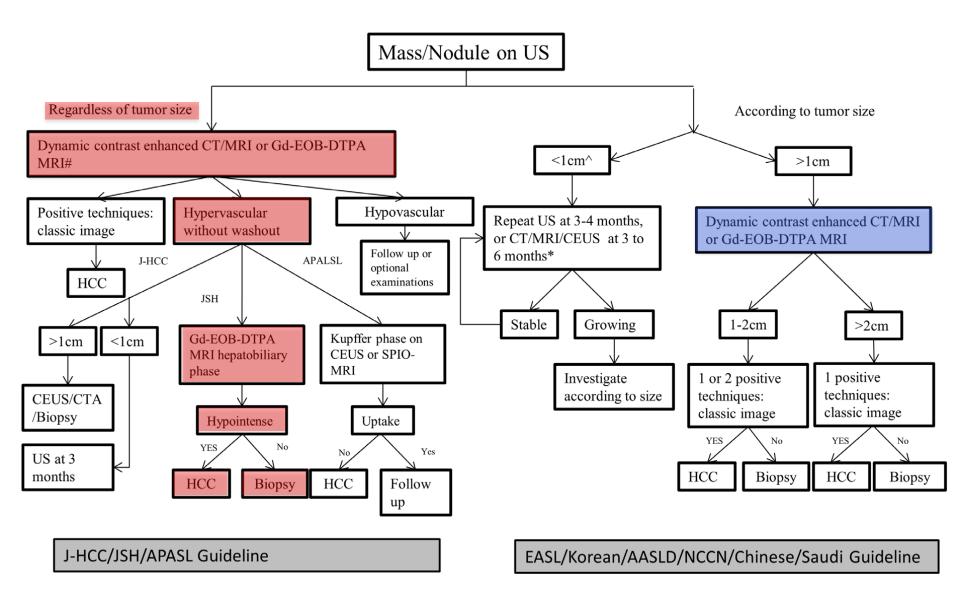

- Historic main etiological factors
 - chronic hepatitis B infection
 - aflatoxin exposure
 - dietary iron overload
- Emerging etiological factors
 - alcoholic liver disease
 - NAFLD/NASH
 - chronic hepatitis C

Clinical presentation

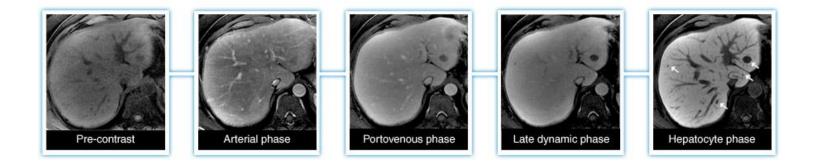
- Symptomatic tumour
- Incidental finding examining liver disease
- Screening of high-risk populations

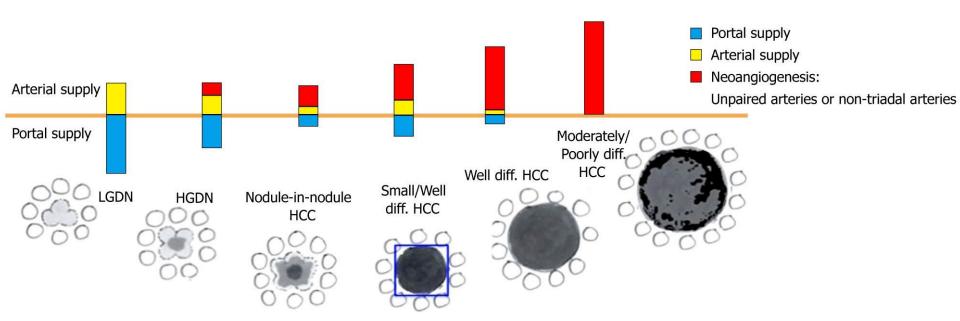



Diagnosis and staging

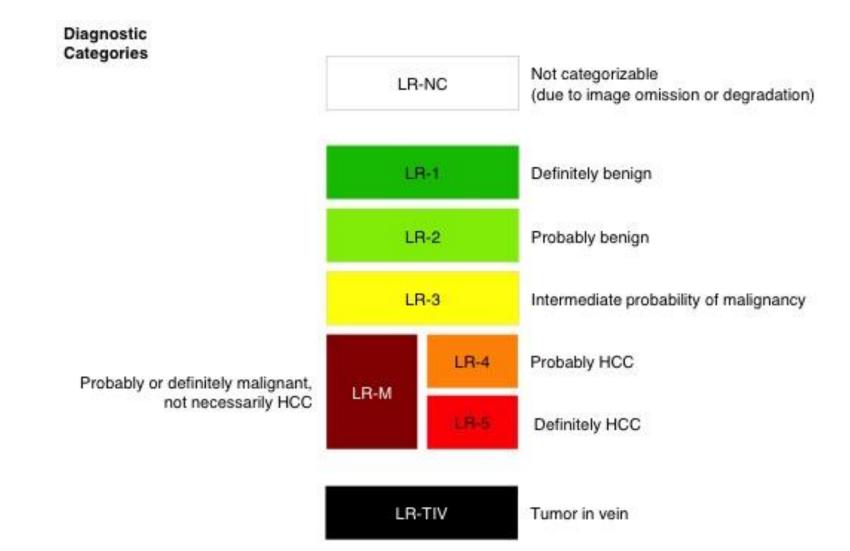

Bruix et al. Hepatology 2011;53:1020-2

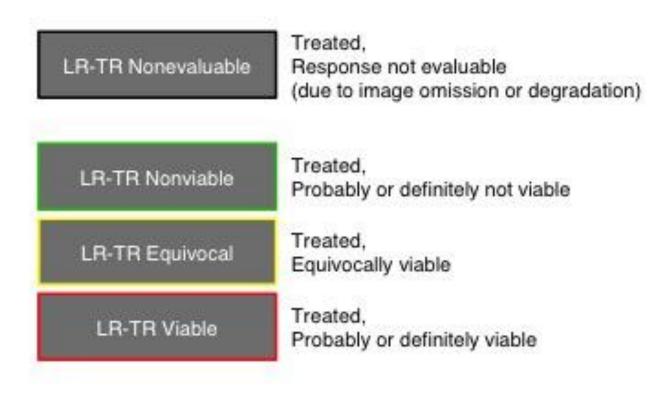
Diagnosis and staging


Llovet et al. Journal of Hepatology 2012;56:908-943

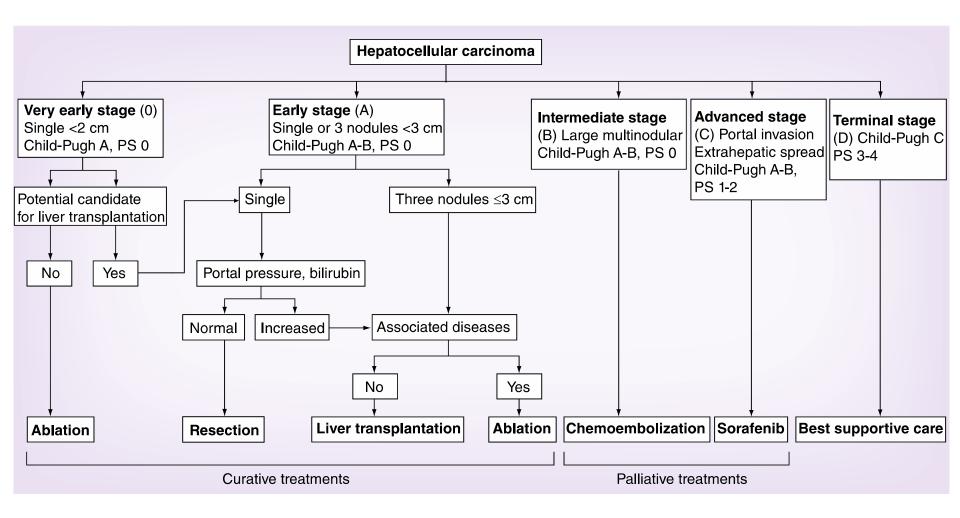

Song P, et al. BioScience Trends. 2017; 11:389-398

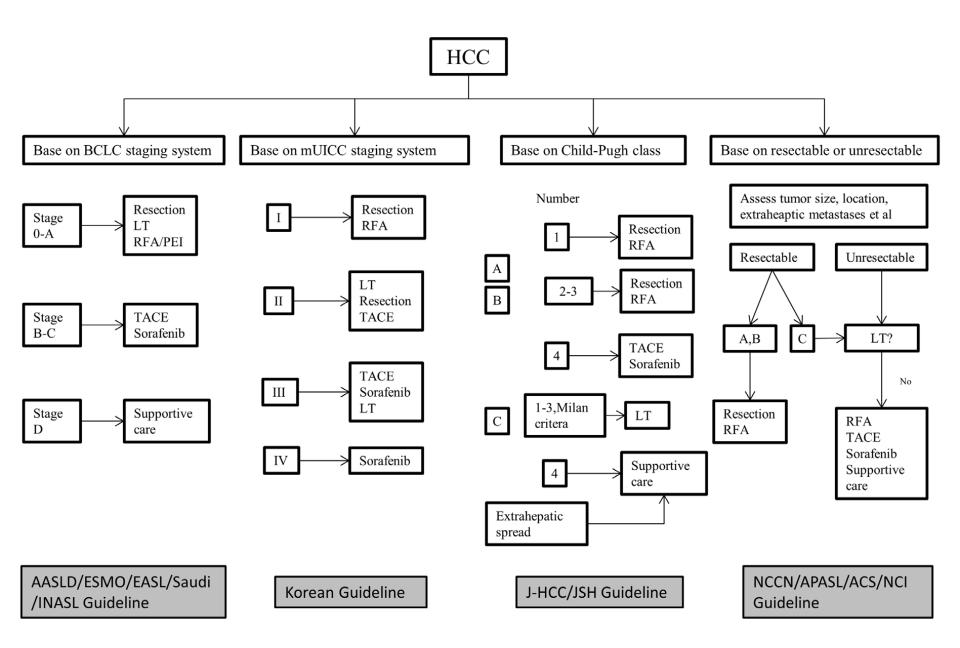
Gd-EOB-DTPA (Primovist[®] /Eovist[®]) Gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid


	Pre-contrast	Arterial phase	Portovenous phase	Delayed phase	Hepatobiliary phase
CE-MDCT	\checkmark	\checkmark	\checkmark	\checkmark	X
ECCM-MRI	\checkmark	\checkmark	\checkmark	\checkmark	Х
Gd-EOB-DTPA-MRI	\checkmark	\checkmark	\checkmark	\checkmark	✓


CE-MDCT	contrast-enhanced multi-detector computed tomography
ECCM-MRI	MRI with extracellular contrast media
Gd-EOB-DTPA-MRI	gadoxetic acid-enhanced MRI

The Liver Imaging Reporting And Data System (LI-RADS)


Treatment Response Categories


Treatment

- Based on the Barcelona Clinic Liver Cancer (BCLC) staging system
- Based on the modified Union of International Cancer Control (mUICC) staging system
- Based on the Child-Pugh class of liver function
- Based on tumor resectability (resectable or unresectable)

Treatment

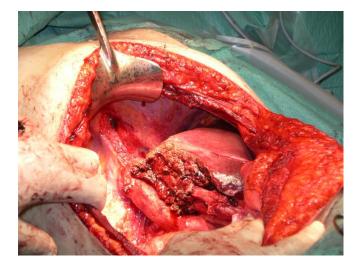
Forner A, et al. Hepatocellular carcinoma. Lancet 2012;379:1245–1255

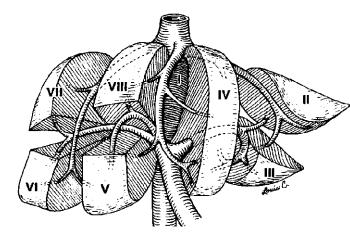
Song P, et al. BioScience Trends. 2017; 11:389-398

The unmet clinical needs of the BCLC guidelines

- Assumptions
 - Universally homogenous disease
 - Homogenous stage stratification
 - Work-up possibilities are available
 - All treatment possibilities are available

- Does not account for heterogeneity
 - Exists for stage A
 - Lacking stage B


Heterogeneity of Patients with Intermediate (BCLC B) Hepatocellular Carcinoma: Proposal for a Subclassification to Facilitate Treatment Decisions


Luigi Bolondi, MD¹ Andrew Burroughs, MBChBHons, FMedSci¹ Jean-François Dufour, MD¹ Peter R. Galle, MD, PhD¹ Vincenzo Mazzaferro, MD¹ Fabio Piscaglia, MD, PhD¹ Jean Luc Raoul, MD, PhD¹ Bruno Sangro, MD, PhD^{1Q1}

	Examples of Patients with Intermediate HCC			
	Patient 1	Patient 2	Patient 3	Patient 4
Bilirubin (mg/dl)	0.9	1.6	2.6	1.9
Albumin (g/dl)	4.8	3.6	3.0	2.7
Ascites	No	Mild	Mild	Refractory
Hepatic encephalopathy	No	No	No	No
Child-Pugh class	A	А	В	В
Number of HCC tumors	2	4	1	4
Diameter of the 2 largest HCC	35–16 mm	60–45 mm	19–18 mm	19–18 mm
Potential treatment	Surgery versus combined TACE + ablation	TACE	TACE (?)	None
Potential for cure (estimated probability of total tumor necrosis) [†]	65%	20%	<5%	0%

Liver resection Principles

- R0 resection
- Sufficient future liver remnant
- No extra-hepatic metastases

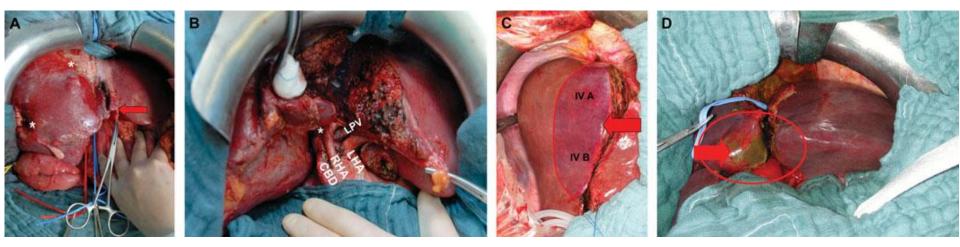
Liver resection Current guidelines

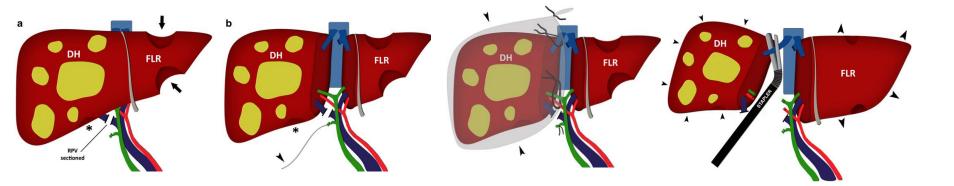
Liver resection Current clinical practice

Guidelines are challenged:

- Multiple lesions
- Large lesions
- Portal hypertension

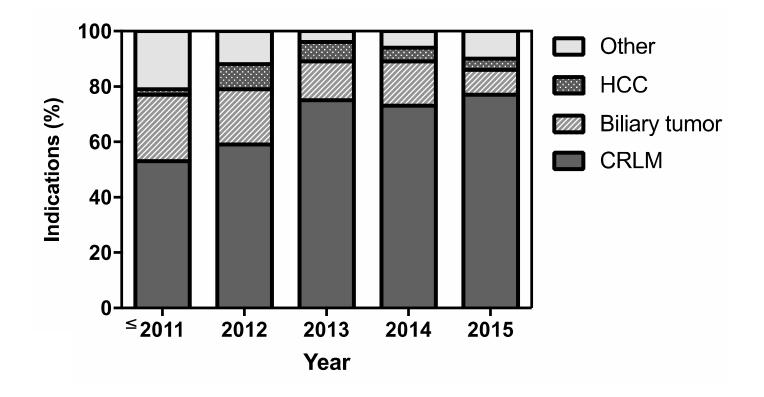
Liver resection Results


Table 1 Results of liver resection in a recently published surgical series (after 2005) in which surgery was performed beyond the beyond barcelona clinic liver cancer recommendations


Ref.	Year	Patients (n)	Mortality/morbidity	5-yr survival
BCLC 0-A HCC with portal hypertension				
Capussotti <i>et al</i> ^[45]	2006	66	6.1%/34.8%	40.80%
Ishizawa <i>et al</i> ^[51]	2008	136	-/10%	56.00%
Cucchetti <i>et al</i> ^[44]	2009	79	4.5%/38.5%	56.50%
Ruzzenente <i>et al</i> ^[46]	2011	29	2.2%/33.7%	$57.3\%(72.4\%)^{1}$
Santambrogio <i>et al</i> ^[45]	2013	63	0.5%/28.6%	48.00%
BCLC A-B multiple HCCs				
Ishizawa <i>et al</i> ^[31]	2008	126	-/15%	58.00%
Ruzzenente <i>et al</i> ^[33]	2009	$30 (\leq 3 \text{ nodules})$	-/-	46.00%
Ho <i>et al</i> ^[59]	2009	97 (\leq 3 nodules)	-/-	40.00%
Huang <i>et al</i> ^[57]	2010	26 (\leq 3 nodules)	0%/27.8%	69.20%
Torzilli <i>et al</i> ^[25]	2013	54 (> 3 nodules)	-/-	12.00%
Zhong <i>et al</i> ^[29]	2013	58 (> 3 nodules)	$3.1\%^2/28.0\%^2$	24.00%
BCLC B large HCC				
Pawlik <i>et al</i> ^[64]	2005	300 (≥ 10 cm)	5.0%/-	27.00%
Pandey <i>et al</i> ^[62]	2007	166 (≥ 10 cm)	3.0%/30.0%	28.60%
Cho et al ^[63]	2007	61 (> 5 cm)	1.6%/-	52.90%
Ruzzenente <i>et al</i> ^[33]	2009	46 (> 5 cm)	-/-	29.00%
Yamashita <i>et al</i> ^[65]	2011	53 (≥ 10 cm)	3.8%/24.5%	35.00%
Zhong et al ^[29]	2013	199 (> 5 cm)	$3.1\%^2/28.0\%^2$	41.00%
BCLC C HCC with macrovascular invasion				
Pawlik et al ^[32]	2005	102 (PVTT and HVI)	5.9%/-	10.00%
Le Treut <i>et al</i> ^[84]	2006	26 (PVTT and HVI)	11.5%/38.5%	13.00%
Ruzzenente <i>et al</i> ^[33]	2009	17 (PVTT and HVI)	-/-	20.00%
Inoue <i>et al</i> ^[81]	2009	49 (PVTT)	0%/-	39%-41%
Ban et al ^[82]	2009	45 (PVTT)	0.0%/21.1%-23.1%	22.40%
Chok <i>et al</i> ^[79]	2013	88 (PVTT)	3.4%/37.1%	11.2%-14.3%
Wang <i>et al</i> ^[76]	2013	25 (HVI)	0.0%/40.0%	13.50%

Guglielmi A, et al. World J Gastroenterol.2014;20:7525-7533

Right Portal Vein Ligation Combined With In Situ Splitting Induces Rapid Left Lateral Liver Lobe Hypertrophy Enabling 2-Staged Extended Right Hepatic Resection in Small-for-Size Settings


Andreas A. Schnitzbauer, MD,* Sven A. Lang, MD,* Holger Goessmann, MD,† Silvio Nadalin, MD,§ Janine Baumgart, MD,|| Stefan A. Farkas, MD,* Stefan Fichtner-Feigl, MD,* Thomas Lorf, MD,¶ Armin Goralcyk, MD,¶ Rüdiger Hörbelt, MD,# Alexander Kroemer, MD,* Martin Loss, MD,* Petra Rümmele, MD,‡ Marcus N. Scherer, MD,* Winfried Padberg, MD,# Alfred Königsrainer, MD,§ Hauke Lang, MD,|| Aiman Obed, MD,¶ and Hans J. Schlitt, MD*

Schnitzbauer AA, et al. Ann Surg. 2012;255:405-14

Current indications

Liver transplantation Principles

- Removes tumour
- Cures liver dysfunction
- Prevents new tumour formation, **<u>not</u>** metastases
- Patients with low risk for metastatic disease are selected

- HCC transplants compete with other indications
- Highly dependent on donor supply

Liver transplantation Current guidelines

Barcelona criteria

Very early or early stage (0;A)

- 1-3 lesions*
- ≤3 cm in diameter*
- Child-Pugh score A-B
- Performance status 0

tumour

function surrogates

general condition

* Milan criteria – ≤5 cm was added as a size limitation for single lesions

OS when transplanted within the BCLC >70% at 5 years

Liver transplantation Current clinical practice

Expanding transplant criteria

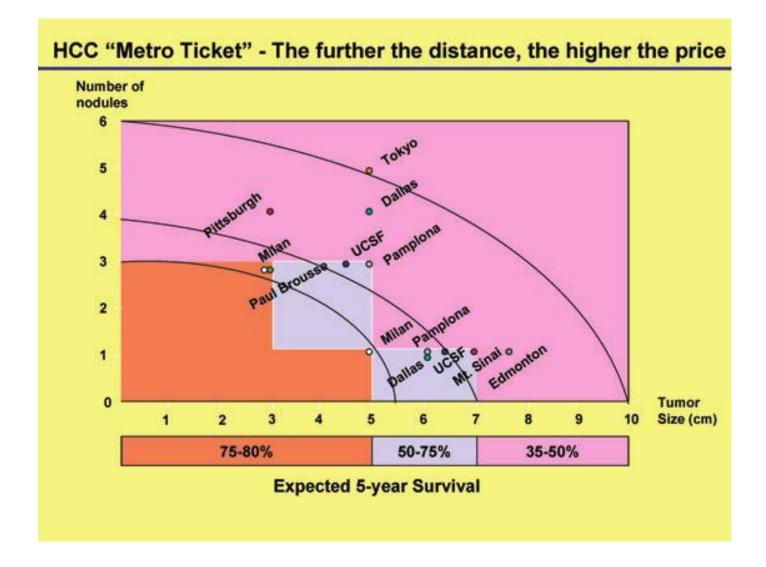
Cons

- Increase need for organs
- Increase waiting times
- Saturating waiting lists with worse outcomes
- Increase drop-outs
- Impairs intention-to-treat results

Milan criteria

- 1 lesion ≤5 cm
- 3 lesions ≤3 cm in diameter

University of California San Francisco (UCSF) criteria

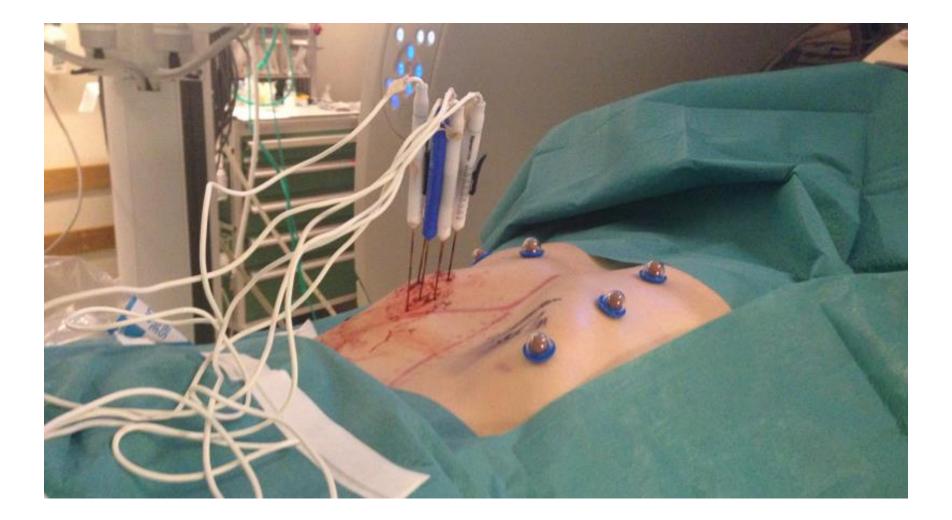

- 1 nodule \leq 6.5 cm
- or 2–3 nodules \leq 4.5 cm; total tumour diameter \leq 8 cm

'Up-to-seven' criteria

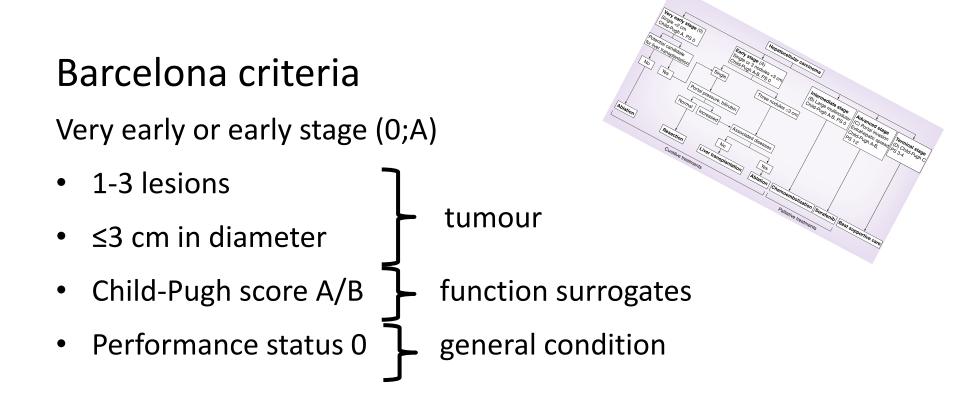
• sum of the size of largest tumour and tumour number ≤ 7

Yao FY, et al. Hepatology 2001;33:1394–403 Mazzaferro V, et al. N Engl J Med 1996; 334: 693–9

HCC Metro ticket



Local ablation **Principles**

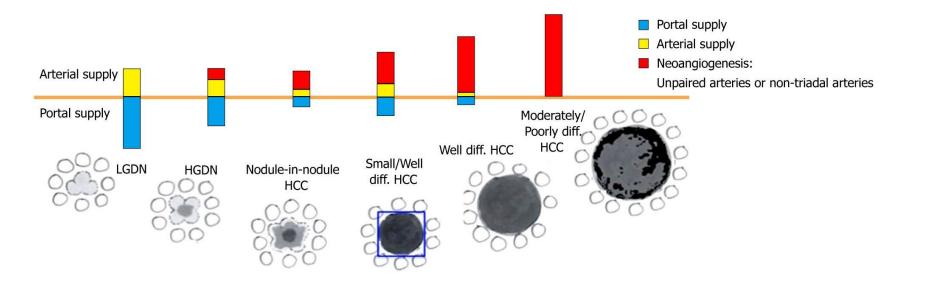

- Radiofrequency ablation (RFA) • Microwave ablation (MWA) \bullet Laser ablation (LA) Х Χ Cryoablation **Ethanol** ablation • Irreversible electroporation (IRE) ۲ High-intensity focused ultrasound (HIFU) χ •
 - $\checkmark X$ Stereotactic body radiation therapy (SBRT) •

Completed Needle Placement

Local ablation Current guidelines

Local ablation Current practice

> 3 cm in size – increase in local recurrence rates


> 3 lesions – oncological more advanced

Local ablation Results

Median overall survival

	Within	Outside
1 year	96–100 %	78 – 98 %
3 year	53–92 %	33–94 %
5 year	41–77 %	20–75 %

Embolization Principles

Embolization Principles

- Transarterial embolization (TAE)
- Transarterial chemoembolization (TACE)
 - conventional Doxorubicin/Lipiodol emulsion
 - Doxorubicin-loaded drug-eluting beads (DEB)
- Transarterial radioembolization (TARE)
 - Iodine-131-labelled Lipiodol
 - microspheres loaded with Yttrium-90 (β emitter with short tissue penetration)

Embolization Current guidelines

Embolization Current practice

Embolization outside the BCLC criteria

Indication

• Intermediate-stage (BCLC B) HCC

Absolute contraindications

- Child-Pugh B ≥8
- Extensive tumour with massive replacement of both entire lobes
- Severely reduced portal vein flow (portal vein occlusions; hepatofugal blood flow)
- Untreatable arteriovenous fistula
- Renal failure (creatinine ≥2 mg/dL; creatinine clearance <30 mL/ min)
 Relative contraindications
- Tumour size ≥10 cm
- Compromised organ function (active cardiovascular disease; active lung disease)
- Untreated varices at high risk of bleeding
- Bile-duct occlusion or incompetent papilla due to stent or surgery

Raoul JL, et al. Cancer Treat Rev 2011;37:212-20

Embolization Results

- Heterogeneity in reported overall survival
- **Prospective studies:** mean OS 3.4-31 months
- **Retrospective studies:** mean OS 8.5-48 months
- Doxorubicin-loaded drug-eluting beads (DEB) can cause complete necrosis of <5 cm HCC nodules
- TARE ? curative modality

Oncologic treatment

Sorafenib (Nexavar)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Sorafenib in Advanced Hepatocellular Carcinoma

- Median OS 10.7 months in the sorafenib group vs. 7.9 months in the placebo group (p<0.001)
- Modest advantage

Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial

- Median recurrence-free survival 33.3 months in the sorafenib group vs 33.7 months in the placebo group (p=0.26)
- No advantage

Table 1 Hepatocellular carcinoma subtypes		
Subtype	Frequency in Surgical Pathology Specimens (%)	Prognosis ^a
Steatohepatitic	20	Similar
Clear cell	7	Better
Scirrhous	4	Similar to better
Cirrhotomimetic	1	Worse
Combined hepatocellular-cholangiocarcinoma	1	Worse
Fibrolamellar carcinoma	1	Similar to better
Combined hepatocellular and neuroendocrine	<1	Worse
Granulocyte colony-stimulating factor producing	<1	Worse
Sarcomatoid	<1	Worse
Carcinosarcoma	<1	Worse
Carcinosarcoma with osteoclast-like giant cells	<1	Worse
Lymphocyte rich	<1	Better
Provisional subtypes		
Chromophobe	1–2	Unclear
Combined hepatocellular-cholangiocarcinoma with stem cell features	<1	Unclear
Lipid rich	<1	Unclear
Мухоіd	<1	Unclear
Syncytial giant cell	<1	Unclear
Transitional cell	<1	Unclear

^a Compared with conventional hepatocellular carcinoma.

Systemic therapy for advanced hepatocellular carcinoma: an update

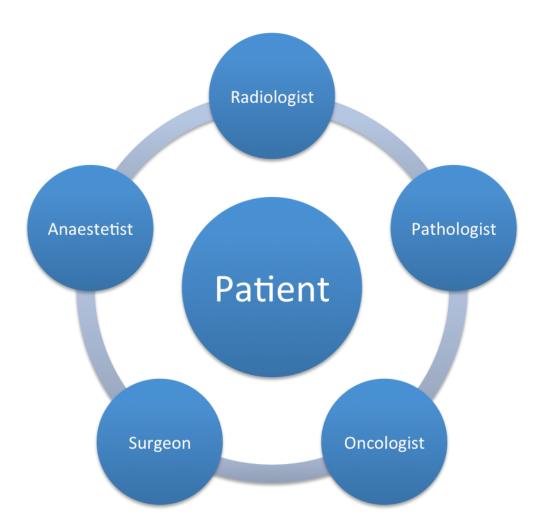
Jasmin Radhika Desai¹, Sebastian Ochoa², Petra Alexandra Prins¹, Aiwu Ruth He¹

Table 1 Relative frequency of genetic mutations in HCC		
Pathway and function	Target	Prevalence (%)
Telomere stability	TERT promoter	60
Wnt/B-catenin pathway	CTNNB1	40
p53/cell cycle control	TP53	25
Chromatin remodeling	ARID1A	15
RAS/PI3K /mTOR	RPS6KA3	10
FGF signaling	FGF19	5
VEGF signaling	VEGFA	3
HCC, hepatocellular carci	noma.	

Drug	Target
ADI-PEG20	Arginine
Bevacizumab	VEGF
Brivanib	VEGFR-2, FGFR-1
Cabozantinib	VEGFR, RET, c-MET
Cediranib	VEGFR, PDGFR, c-KIT
Cixutumumab	IGF-1R
Erlotinib	EGFR
Everolimus	mTOR
Ipilimumab	CTLA-4
Lenvatinib	VEGFR, PDGR, FGFR, RET, SCFR
Linifanib	VEGFR, PDGFR
Nivolumab	PD-1
Orantinib	VEGFR, PDGFR, FGFR
Ramucirumab	VEGFR
Regorafenib	VEGFR, PDGFR, RET, c-KIT, BRAF, FGFR
Sorafenib	VEGFR, PDGFR, RAF
Sunitinib	VEGFR, PDGFR, RET, c-KIT
Tivantinib	c-MET
Tremelimumab	CTLA-4

Desai J, et al. J Gastrointest Oncol 2017;8:243-255

Prognosis


- Liver resection*
- Local ablation*
- Transplantation*
- TACE
- Sorafenib

- >70% 5 year survival
- >70% 5 year survival
- >75% 5 year survival
- 20 mo improved survival
- 2.9 mo improved survival
- Best supportive care

*Treated within the Barcelona criteria

Guglielmi A, et al. World J Gastroenterol.2014;20:7525-7533 Yao FY. American Journal of Transplantation 2008;8:1982–1989 Tiong L, et al. British Journal of Surgery 2011;98:1210–1224 Llovet JM, Bruix J. Hepatology 2003;37:429–42 Llovet JM, et al. N Engl J Med 2008;359:378-90

MDT conference

Thank you

eduard.jonas@uct.ac.za