Gastric Varices Novel Management

Vikash G Lala

INTRODUCTION

- Prevalence = 17% 25%
- More common prehepatic PHT
- Splenic vein thrombosis with left-sided PHT
- Gastric varices = CSPH
- Bleed at lower portal pressures vs esophageal varices
- Bleeding from cardiofundal varices = 16%-45% at 3 years.
- Predictors of bleeding:
 - Size (>10 mm),
 - Red wale/nipple
 - Liver disease severity

Table1 Classification systems for gastric varices

Classification	ystems for gastric varices				
A. Sarin's classification	of gastric varices ¹				
Gastroesophageal va GOV1 GOV2	Varices in continuity with esophageal varices Along the lesser curvature Along the greater curvature extending toward the gastric fundus				
Isolated gastric varice IGV1 IGV2	Isolated cluster of gastric varices in the gastric fundus Isolated gastric varices in the other parts of the stomach				
B. Hashizume classifi	tion of gastric varices ²				
Form	F1 (tortuous), F2 (nodular) and F3 (tumorous)				
Location	La (anterior), Lp (posterior), Ll (lesser curvature), Lg (greater curvature), Lf (fundus)				
Color	Cw (white), Cr (red)				
RCS	Glossy, thin-walled focal redness on the varix				
C. Hoskins and Johns	's classification of gastric varices³				
Type 1	Inferior extension of esophageal varices across the squamo-columnar junction				
Type 2	Gastric varices located in fundus, which appear to converge to cardia with esophageal varices				
Type 3	Gastric varices in fundus or body in the absence of esophageal varices				
D. Arkawa classificati	of gastric varices ⁴				
Type I Ia Ib	A single supplying vessel forms a fundic varix Plural supplying vessels join and form a varix that drains into a single vessel				
Type II	Gastric varices with multiple communications with vessels in stomach wall				
E. Mathur's classifica	n of gastric varices ⁵				
Type 1	Esophageal varices with lesser curvature varices				
Type 2	Esophageal varices with fundal varices (2a—subcardiac and 2b—diffuse fundal)				
Type 3	Isolated fundal varix (3a—due to splenic vein thrombosis, 3b—due to generalized portal hypertension)				
Type 4	Lesser curvature gastric varices with esophageal varices with fundal varices				
Type 5	Antral varices				
	· · · · · · · · · · · · · · · · · · ·				

Abbreviations: GOV, gastroesophageal varices; IGV, isolated gastric varices; RCS, red color spot.

D. Arkawa classification of gastric varices ⁴				
Type I la Ib	A single supplying vessel forms a fundic varix Plural supplying vessels join and form a varix that drains into a single vessel			
Type II	Gastric varices with multiple communications with vessels in stomach wall			

Saad-Caldwell Classification

- Describes variations in afferent flow into the gastric varix and efferent flow through the portosystemic shunt
- Type 1 dominant portal venous feeder is LGV
- Type 2 dominant portal venous feeder is PGV's or SGV's
- Type 3 All venous feeders are involved w/ variable dominance
- Further defined by the absence (a) or presence of a GRS (b)
- Subtype implies therapeutic management

LEGEND

BRTO: Balloon-occluded Retrograde

Transvenous Obliteration FGV: Fundal Gastric Varices

GRS: Gastro Renal Shunt

ECI: Endoscopic Cyanoacrylate Injection

LGV: Left Gastric Vein

LCGV: Lesser Curvature Gastric Varices

LRV: Left Renal Vein

PGV: Posterior Gastric Vein

PSS: Portosystemic Shunts

SGV: Short Gastric Vein

SV: Splenic Vein

TIPS: Transjugular intrahepatic portosystemic

shunt

AGA Clinical Practice Update on Management of Bleeding Gastric Varices: Expert Review Henry Z., Patel K., Patton H., Saad W. (2021) Clinical Gastroenterology and Hepatology, 19 (6), pp. 1098-1107.e1.

TREATMENT

- Endoscopic
 - EVL GOV1
 - Low/moderate rates of bleeding control (45%–93%)
 - Higher rebleeding rates
 - No readily available options and varix can be completely suctioned cap
 - Gastroscopy Glue injection cyanoacrylate
 - Success rates > 87%–100%
 - Bakri Balloon
 - EUS Glue ± coils

TREATMENT

- IR
 - Occlusive BRTO, BATO, CARTO
 - Increased incidence ascites, bleeding from esophageal varices
 - Improved liver function and reduce encephalopathy -redirecting portal flow toward the liver
 - Shunts TIPSS
 - Large esophageal varices, significant ascites, PVT, absence of HE
 - Better for lesser curvature > cardiofundal

INDICATIONS

- Active bleeding
- Prophylaxis high-risk fundal varices (GOV2/IGV1)
- Failed standard therapy
- Expert centre IR availability

RECOMMENDATION

ESGE recommends endoscopic cyanoacrylate njection or EBL in patients with GOV1-specific bleeding.

Strong recommendations, moderate quality evidence.

RECOMMENDATION

ESGE recommends endoscopic cyanoacrylate injection for acute gastric (cardiofundal) variceal (GOV2, IGV1) hemorrhage.

Strong recommendation, high quality evidence.

RECOMMENDATION

ESGE suggests that, in those patients unable to receive NSBB therapy with a screening upper GI endoscopy that

demonstrates gastric varices (Sarin GOV-2 or IGV-1; cardiofundal varices), no treatment, cyanoacrylate injection alone, or endoscopic ultrasound (EUS)-guided coil plus cyanoacrylate injection can be considered. EUS-guided injection therapy should be decided on a case-by-case basis and limited to centers with expertise in this endoscopic technique.

Weak recommendation, low quality evidence.

- 41. Patients with high-risk cardiofundal (GOV2 or IGV1) varices (≥ 10 mm, red wale signs, CTP class B/C) who have contraindications or intolerance to NSBBs may be considered for primary prophylaxis with endoscopic cyanoacrylate injection (ECI).
- 42. Neither TIPS nor BRTO (or related obliterative techniques) are recommended to prevent first hemorrhage in patients with fundal varices that have not bled.
- 45. In patients with acute hemorrhage from gastric (GOV2/IGV1) or ectopic varices, either endoscopic cyanoacrylate therapy, TIPS, or retrograde transvenous variceal embolization/ obliteration can be considered first-line options. Retrograde obliteration is preferred when TIPS is contraindicated.

► **Table 2** Comparison of variceal and procedural characteristics and primary outcomes of the study.

	Coils + CYA (n=30)	Coils alone (n=30)	P value			
Variceal and procedural characteristics						
Type, n (%)						
GOV II	19 (63.3)	12 (40.0)	0.071			
• IGV I	11 (36.7)	18 (60.0)				
Diameter, median (range), mm	21 (10 – 32)	25 (10 – 38)	0.15 ²			
Number of coils placed, median (range)	2 (1 – 3)	3 (1 – 7)	0.0061			
Primary outcomes						
Technical success, n (%)	30 (100.0)	30 (100.0)	n/a			
Complete obliteration, n (%)	30 (100.0)	27 (90.0)	0.12 ³			
Immediate varix disappearance, n (%)	26 (86.7)	4 (13.3)	<0.001 ³			
Adverse events, n (%)	2 (6.7)	1 (3.3)	0.50^{3}			

► **Table 3** Comparison of the secondary outcomes of the study.

	Coils + CYA (n = 30)	Coils alone (n=30)	P value
Survival time, median (range), months	16.4 (0.6 – 31.2)	14.2 (0.8 – 28.2)	0.90 ¹
Mortality rate, n (%)	9/30 (30.0%)	8/30 (26.7)	0.84 ²
Rebleeding, n (%)	1 (3.3)	6 (20.0)	0.042
Varix reappearance, n (%)	4 (13.3)	14 (46.7)	<0.001 ²
Reintervention-free time, median (range)	15.8 (0.3 – 31.2)	12.5 (0.1 – 20.2)	0.01 ³
Reintervention, n (%)	5 (16.7)	12 (40.0)	0.045 ²

Intervention/out- comes, pooled rate, % (95%CI, I ²)	All EUS modalities	EUS-glue	EUS-coil	EUS-coil/glue	END-glue (comparator group)
Treatment efficacy	93.7 (89.5 – 96.3, 53.7) 29 cohorts	91 (80 – 96.2, 40) 9 cohorts	84.2 (54.5 – 96, 6.5) 3 cohorts	96.7 (93 – 98.5, 55) 14 cohorts	91.4 (82.8 – 95.9, 97) 28 cohorts; <i>P</i> = 0.4
Obliteration of gastric varices	84.4 (74.8 – 90.9, 77) 21 cohorts	90 (71.3 – 97, 0) 5 cohorts	N/C	86.2 (75.5 – 92.7, 74) 12 cohorts	62.6 (42.6 – 79.1, 97); 13 cohorts; <i>P</i> = 0.02
Recurrence of gastric varices	9.1 (5.2 – 15.7, 32) 16 cohorts	15 (8.8 – 24.5, 0) 5 cohorts	N/C	5.2 (2.6 – 9.8, 0) 6 cohorts. <i>P</i> = 0.01	18 (11.4 – 27.2, 89) 8 cohorts; <i>P</i> = 0.06
Early rebleeding	7 (4.6 – 10.7, 0) 20 cohorts	6 (3.1 – 11.1, 0) 8 cohorts	N/C	7.7 (3.9 – 14.9, 46) 7 cohorts	5 (3.3 – 7.4, 72) 23 cohorts; <i>P</i> = 0.7
Late rebleeding	11.6 (8.8 – 15.1, 22) 26 cohorts	16.3 (9.7 – 26.1, 65) 8 cohorts	16.8 (7.3 – 34.1, 0) 3 cohorts)	9.2 (6.4 – 13, 0) 12 cohorts	17 (12.3 – 22.9, 92) 27 cohorts; <i>P</i> = 0.1

Study name	Sta	atistics for	each study	/	Event rate and 95% CI
	Event rate	Lower limit	Upper limit	<i>P</i> -value	
Baptista, 2017	0.917	0.378	0.995	0.105	
Bhat, 2016	0.930	0.860	0.966	0.000	
Bick, 2018	0.737	0.608	0.835	0.001	
Bick, 2018	0.938	0.461	0.996	0.064	
Binmoeller, 2011	0.958	0.756	0.994	0.002	_
Frost, 2018	0.667	0.154	0.957	0.571	
Frost, 2018	0.800	0.309	0.973	0.215	
George, 2017	0.500	0.168	0.832	1.000	
Khoury, 2019	0.700	0.376	0.900	0.220	
Lee, 2000	0.796	0.668	0.883	0.000	
Lobo, 2019	0.969	0.650	0.998	0.017	
Lobo, 2019	0.923	0.609	0.989	0.017	
Mathew, 2018	0.774	0.596	0.888	0.004	
Mukkada, 2018	0.267	0.139	0.450	0.014	
Robles-Medranda, 2018	0.967	0.798	0.995	0.001	
Romero-Castro, R 2007	0.917	0.378	0.995	0.105	
Romero-Castro, R 2013	0.975	0.702	0.998	0.011	
Romero-Castro, R 2013	0.909	0.561	0.987	0.028	
Singla, 2018	0.947	0.813	0.987	0.000	
Weilert, 2015	0.945	0.889	0.973	0.000	
Yague, 2009	0.444	0.177	0.749	0.739	
	0.844	0.748	0.909	0.000	
					-1.00 -0.50 0.00 0.50 1.0

▶ **Fig. 4** Forest plot – gastric varices obliteration in endoscopic ultrasound-guided therapy. CI, confidence interval.

Intervention/out- comes, pooled rate, % (95 %CI, I²)	All EUS modalities	EUS-glue	EUS-coil	EUS-coil/glue	END-glue (comparator group)
Adverse events					
Embolism	5.6 (3.1 – 9.8, 56) 28 cohorts	8.4 (3 – 21.3, 66) 9 cohorts	4 (0.5 – 25.7, 0) 3 cohorts	4.3 (1.8 – 9.8, 59) 13 cohorts; <i>P</i> = 0.33	-
Mild adverse events	5.9 (4.1 – 8.3, 0) 28 cohorts	4.7 (2.1 – 10.6, 0) 9 cohorts	3.9 (0.8 – 18.1, 0) 3 cohorts	5.3 (3.2 – 8.6, 35) 13 cohorts	-
Moderate adverse events	5.7 (3.2 – 9.8, 53) 28 cohorts	9 (3.5 – 21.6, 66) 9 cohorts	4 (0.5 – 25.1, 0) 3 cohorts	4 (1.7 – 9.2, 57) 13 cohorts	
Mortality (all-cause)	13.1 (8.3 – 20.2, 68); 19 cohorts	27.9 (16.3 – 43.5, 75); 5 cohorts	N/C	9 (5.1 – 15.2, 0); 9 cohorts; $P = 0.003$	
Mortality due to gastric varices rebleed	7.7 (4.9 – 11.9, 29) 18 cohorts	12 (5.2 – 25.6, 58) 5 cohorts	N/C	4.5 (2 – 9.8, 21) 8 cohorts; <i>P</i> = 0.09	

ADVANTAGES

- Direct visualization endoscopic + U/S
- EUS visibility in bloody field
- Puncture varix under direct vision
- Identify feeder vessels
- 19G injection of coils
- Confirm placement
- Confirm obliteration doppler

TABLE 1. Instruments and accessories required for EUS-guided vascular therapy				
1	Curvilinear echoendoscope			
2	Nineteen- or 22-gauge FNA needle			
3	Five- or 2-mL syringes filled with distilled water (5-6 syringes)			
4	Coils (0.035 or 0.018 inches; straight lengths of 50-150 mm; coiled diameter of 8-20 mm; 3.2-5.6 configuration loops)*			
5	Glue (n-octyl-cyanoacrylate or n-butyl-cyanoacrylate)			
6	Lipiodol†			

^{*}Specification of Nester coils (COOK Medical, Bloomington, Ind, USA).

Figure 2. Instruments and accessories required for EUS-guided vascular therapy. **A,** Curvilinear echoendoscope. **B,** Nineteen-gauge FNA needle. **C,** Five to six 2- or 5-mL syringes filled with distilled water. **D,** Coils (0.035 or 0.018 inches). **E,** Glue (n-octyl-cyanoacrylate or n-butyl-cyanoacrylate).

[†]Lipiodol can be used at the discretion of the endoscopist. Alternatively, 5% or 50% dextrose can also be used to flush the glue out of the needle.

TECHNIQUE

- Feeder vs Direct
- Needle size (depending on coils)
- Number of coils = size of varix
- Avoid deployment through prox and distal wall
- Flush avoid blood clots + repeat
- Injection of glue + lipiodol /gelatin sponge/thrombin
- Promptly re-sheath needle, withdraw scope catheter protruding
- Assess doppler flow

OUR EXPERIENCE

- ± 2 years
- Learning curve!!!
- Preparation = key
- Team approach
- Identify feeder
- Loading coils into needle
 - Straight/stable scope
 - Avoid deployment
 - Avoid clots
- Mixing thrombin

- Adverse events
 - No puncture site bleeding
 - No embolism
 - Coils extrusion

